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1 Introduction 

Freshwater ecosystems are some of the most important ecosystems on the planet, 
providing a range of ecosystem services to humans, including clean water, food, and rec-
reation. They are also home to a vast array of biodiversity, including many species that 
are found nowhere else on earth. Unfortunately, freshwater ecosystems are under threat 
from a range of human activities, including pollution, habitat destruction, and climate 
change. Current biodiversity policies and strategies as well as assessments of progress 
towards set targets, point out that there has been a general failure to halt the negative 
trend of biodiversity loss and that different approaches are needed to reverse the situa-
tion. This includes revision of targets and the indicators that inform the targets and a 
greater emphasis on the links between biodiversity, ecosystems and their services and 
people.  

The European Space Agency (ESA) activity called Biodiversity+ Precursors is a contribu-
tion to the joint EC-ESA Earth System Science Initiative launched in February 2020 to 
jointly advance Earth System Science and its response to the global challenges that soci-
ety is facing. The ESA Biodiversity+ Precursors include four projects on different themes 
and BIOMONDO is the freshwater project, and has a focus on biodiversity in lakes, wet-
lands, rivers, and streams. 

BIOMONDO aims to improve our understanding of freshwater biodiversity around the 
world and to support freshwater biodiversity monitoring through development of solu-
tions that integrate EO data and state-of-the-art biodiversity modelling using advanced 
data science and information and communications technology. Three BIOMONDO Pilots 
have been developed and will demonstrate how novel Earth Observation and Biodiversity 
modelling products can be integrated to enhance scientific understanding and support 
decision systems for biodiversity monitoring addressing policy priorities such as the EU 
Biodiversity Strategy for 2030.  

To develop a broad outlook on ongoing changes in freshwater biodiversity and how these 
changes can be monitored using EO data, our three BIOMONDO pilots each address pilot 
objectives and knowledge gaps corresponding to one of the following three drivers of 
global environmental change in freshwater ecosystems: ‘pollution and nutrient enrich-
ment’ (Pilot 1 - Eutrophication), ‘climate change’ (Pilot 2 – Heat Tolerance of Fish), and 
‘habitat change’ (Pilot 3 – River Connectivity). The resulting combination of data from 
Earth Observation, in-situ measurements and model outputs is made available to the sci-
entific and policy community through the BIOMONDO Freshwater Biodiversity Labora-
tory. 
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2 Scope of this document 
Within the BIOMONDO project, data from various sources has been collected and own 
data products have been produced to develop three pilot studies for freshwater system 
biodiversity observation and monitoring.  

This document is a description of the novel methods and products developed as well as 
the specification of the models and methods used for the BIOMONDO Freshwater Labor-
atory. The novel methods include new algorithmic approaches, new models and interac-
tions and combinations of different datasets and results. Furthermore, the three BIO-
MONDO pilots are descripted in detail and the results are discussed.  

The structure of the document includes the description of the BIOMONDO approach, fol-
lowed by the description of the novel methods and their implementation. The last chapter 
includes the application and use of the methods within the three pilots and showcase the 
applicability. For publicly available operational services, a description and literature ref-
erences are given. For own processed data sources and models an evaluation was per-
formed during the data collection phase, and validation results to justify the final selection 
are provided in D2.3. For a more detailed overview look into related documents which are 
described in Table 1. 

 
Table 1 Reference documents 

Document Version Short description 

Development Database D2.1 v.2.1 A detailed structure of all input datasets and 

how to access them. Can made be available on 
request. 

Product Validation Re-
port  

D2.3 v2.0 A detailed specification of the validation 
methods, metrics and description of the ref-
erence data. 

Experimental Datasets D2.4 v1.0 A detailed description of the Experimental 
Datasets and how to explore them. 
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3 BIOMONDO Approach 
The BIOMONDO approach includes the development and implementation of the technical 
and practical basis in the BIOMONDO Freshwater Laboratory. An overview of the BIO-
MONDO Lab is given in Figure 1. On the left side we have the EO based inputs. In green 
are satellite data which require own thematic processing, e.g. to detect dams and other 
human disturbances, or S2 based high resolution water quality products. In brown are EO 
based products which have already been processed and which are available from opera-
tional services. On the bottom right side in purple are non-raster data including infor-
mation from biodiversity databases, in-situ measurements, and citizen science activities. 
On the top right, red colour, are ecosystem and biodiversity models at different spatial 
scales. In orange on the center right side are the user interfaces and data analysis APIs. In 
the center are the BIOMONDO datacubes which combine all these inputs and are made 
accessible and processable. We almost completely rely on existing building blocks (EO 
operational services, xcube, xcube viewerand Delft3D-ECO models, Jupyter Lab), but have 
adapted the required methods to extended data sources, established the interactions be-
tween these data sources and developed a combination of data sources into thematic eco-
system change indices (TECIs). These novel methods are described in this ATBD and are 
show in Figure 1 within the grey boxes. The novel methods include novel EO products and 
applications, a heat tolerance model for fish species, the implemented use of EO data 
within models and the resulting data cube-model loop, which feeds model outputs back 
into a data cube, and the methodology and implementation of the Thematic Ecosystem 
Change Indices. Already existing algorithms like the Delf3D model, the Connectivity Model 
or existing EO operational services will not be described in detail, but their use and refer-
ence will be outlined in the description of the pilots in Chapter 5. 

The BIOMONDO Freshwater Lab is set-up with access to all required inputs and interac-
tions for the biodiversity pilots and will be kept in operation for the potential use by the 
biodiversity experts and early adopters within WP3 and WP4. 
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Figure 1 Concept of the BIOMONDO Laboratory with the novel methods described in this ATBD. 

 

The BIOMONDO Freshwater Laboratory is a federation of all the data and is made acces-
sible via state-of-the-art methods (e.g. JupyterNBs, xcube Viewer). Visualisation interfaces 
and export function complements the BIOMONDO Lab. Providing access to the Lab is an 
important task within this project and we believe that this way of enabling scientists and 
other users to get access to novel EO products and models is the best way to proceed. It is 
not the scope of this precursor project to implement a fully-fledged Biodiversity Lab but 
to test critical concepts and provide recommendations for the roadmap. We will use ex-
isting software, namely the xcube ecosystem of python tools and services, to implement 
basic functionalities (more information about the xcube software can be found here: 
https://xcube.readthedocs.io). This will already be suitable to provide the BIOMONDO 
Lab to biodiversity experts of our pilot sites and the Early Adopters, to work with the EO 
data and model results in an agile manner. More information about the BIMONDO Fresh-
water Lab can be found in the D2.4 document (Table 1). 

  

https://xcube.readthedocs.io/
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4 Algorithms and Methods 
Remote sensing and modelling are powerful tools for monitoring and understanding 
freshwater biodiversity. By providing researchers with the ability to gather data on a large 
scale and simulate different scenarios, these methodologies are helping to improve our 
understanding of the complex and interconnected nature of freshwater ecosystems and 
how best to protect and conserve them. 

4.1 Remote Sensing Algorithms 
Earth observation data is essential for studying and monitoring freshwater biodiversity 
because it provides information on the spatial and temporal dynamics of aquatic ecosys-
tems. EO data provides information on various environmental factors such as water qual-
ity, temperature, and land use. For the BIOMONDO project the focus is set on operational 
EO services and often used and generally accepted EO algorithms to feed the BIOMONDO 
Freshwater Lab with EO data. Nevertheless, a few novel methods and applications were 
developed to support the Pilots in this project. 

4.1.1 Water Quality Retrieval 

Water quality retrieval using remote sensing data is important for freshwater biodiversity 
monitoring because it provides valuable information about the physical and chemical 
properties of water that can impact the survival and health of freshwater organisms. Re-
mote sensing data can be used to estimate several water quality parameters, such as chlo-
rophyll-a, suspended solids, turbidity, and dissolved organic matter, which can help re-
searchers to understand the state of the ecosystem and the potential impacts of environ-
mental stressors. 

4.1.1.1 C2RCC with C2X-Complex Nets  

The C2RCC (Case 2 Regional Coast Colour) processor is used for the atmospheric correc-
tion and retrieval of water quality parameters from Sentinel-2 satellite imagery. It is spe-
cifically designed for processing imagery of coastal and inland water bodies, where the 
water is not perfectly clear and contains a variety of constituents, such as dissolved or-
ganic matter, suspended sediments, and phytoplankton. The C2RCC algorithm (Doerffer 
and Schiller, 2007, Brockmann et al., 2016) has evolved from the "Case 2" algorithm orig-
inally developed for MERIS and is now based on a suite of neural networks. A water-in-
herent optical properties model and a coupled water-atmosphere radiative transfer 
model are used to generate a very large number of water reflectance and TOA reflectance 
spectra from different combinations of water constituent concentrations and different at-
mospheric conditions. These simulated TOA reflectance spectra are used to train a neural 
network that can then quickly invert each input TOA reflectance spectrum to present op-
timal estimates of water reflectance and water constituent concentrations. The C2RCC al-
gorithm shows robust performance under a range of water and atmospheric conditions, 
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including extremely absorbing and extremely scattering water. A limitation of C2RCC is 
that the method assumes that the water reflectivity matches the spectra that were present 
in the neural network training set. C2RCC is a coupled algorithm because it calculates both 
atmospherically corrected water reflections and the water constituents. In the context of 
BIOMONDO, C2RCC is used as a coupled algorithm for Sentinel-2 applying the C2X-COM-
PLEX nets. These neural networks were trained with a dataset representing optical mod-
els of complex water bodies, covering the properties of inland waters and their concen-
tration ranges for chlorophyll-a concentration and turbidity. The novelty of this method 
within the BIOMONDO project is the application of the C2RCC with C2X-Complex nets to 
the unknown Mekong River waters. The C2X-Complex net was trained with sampled data 
from inland waters of Germany and never tested for the high turbid und unknown waters 
within the monsoon season in Asia and the Mekong. The application of the C2RCC with 
C2X-Complex nets proved to be very reliable for the volatile river water constituents. Vis-
ualizations and validation of the datasets can be found in the BIOMONDO D2.3 document 
(Table 1). 

4.1.1.2 Forel Ule Index 

Increasing brownification of inland waters and rivers have ecological and social conse-
quences (Kitzberg et al., 2020). The brownification has profound physical, chemical and 
biological repercussions for aquatic ecosystems affecting water quality, biological com-
munity structures and aquatic productivity. Potential drivers of brownification trends are 
complex and include reductions in atmospheric acid deposition, changes in land 
use/cover, increased nitrogen deposition and climate change (Meyer-Jacob et al., 2019). 
The Forel-Ule (FU) color index has been calculated to assess the watercolor within the 
Mekong and its side arms. The FU scale was initially developed as a color index that would 
allow the visual classification of the watercolor (Wernand and Van Der Woerd, 2010) and 
divides water reflectance spectra into 21 color classes from dark blue to yellowish-brown. 
The classification into the 21 colors is based on a calculated hue angle. For Sentinel-2 the 
calculation of the FU value uses the water-leaving reflectance (Rrs) data calculated with 
the C2RCC. We used the FU approach to investigate the hypotheses that the watercolor 
changes due to the increasing number of dams in the Mekong basin, resulting in reduced 
sediment transportation (Schmitt et al., 2018). The results of the FU calculation can be 
found in the BIOMONDO D2.3 document (Table 1).  

4.1.2 LSWT Gap filling with DINEOF 

Remote sensing data can be used to estimate lake surface temperature by measuring the 
amount of thermal radiation emitted by the water surface. This information is used to 
create a continuous map of lake surface temperature and to monitor changes over time 
and across space. However, remote sensing data may have limitations, such as cloud cover 
or poor spatial resolution, which can limit its accuracy.  

Daily LSWT gap filled L4 products have been generated using the DINEOF (Data Interpo-
lating Empirical Orthogonal Functions) approach, which reconstructs missing data in ge-
ophysical datasets by using a truncated Empirical Orthogonal Functions (EOF) basis in an 
iterative approach. DINEOF reconstructs missing data in a geophysical dataset by extract-
ing the main patterns of temporal and spatial variability from the data. DINEOF has been 
successfully applied to sea surface temperature (e.g. Alvera-Azcárate et al., 2005), 
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chlorophyll-a and winds (e.g. Alvera-Azcárate et al., 2007), and total suspended matter 
(e.g. Alvera-Azcárate et al., 2015). While originally designed for low resolution data prod-
ucts, recent research has resulted in the optimization of DINEOF to handle high resolution 
data provided by Sentinel-2 MSI, including cloud shadow detection (Alvera-Azcárate et 
al., 2020). As data source the ESA Lakes v2.0.1 LSWT was used and interpolated for Lake 
Marken and Lake Mälaren. The L4 LSWT products are used for the Heat Tolerance Model 
described in Chapter 4.2. The validation of the L4 LSWT products are available in the BI-
OMONDO D2.3 document (Table 1). 

4.1.3 Phenology 

Phenology refers to the seasonal timing of recurring biological events, such as the emer-
gence of leaves, the flowering of plants, or the migration of animals. In freshwater ecosys-
tems, phenology is an important driver of biodiversity and ecosystem function, as it influ-
ences the timing and availability of resources for aquatic species. For example, the timing 
of the spring thaw and the onset of snowmelt can influence the timing of breeding and 
reproduction for many fish and amphibians, while changes in the timing and duration of 
algal blooms can affect food availability for zooplankton and other aquatic consumers and 
are one of the most visible effects of lake eutrophication. Phenology is also sensitive to 
changes in climate and other environmental factors and can therefore be used as an indi-
cator of ecosystem health and change over time.  

Remote sensing data can provide valuable information on the phenology of freshwater 
ecosystems, allowing for the monitoring and analysis of changes in the timing and inten-
sity of biological events over time. To study these changes, metrics of phenology were 
extracted from daily chlorophyll-a concentrations (on a pixel level) with a method that 
roughly follows Grey et al. (2019), i.e.  the method used for the extraction of global land-
surface phenology for MODIS Land Cover Dynamics product (MCD12Q2.v6.1). More spe-
cifically, periods of sustained in- and decreases in chlorophyll-a concentration were iden-
tified that occurred over a minimum period of 16 days and of which the amplitude corre-
sponded to at least 20% of the maximum amplitude of change in chlorophyll concentra-
tion observed in each year (the minimum period and amplitude were varied to see 
whether this affects results). For each of these periods the day at which a “peak” in chlo-
rophyll concentration was then determined (i.e. when the first derivative changes sign), 
as well as a variety of related metrics of phenology such as the day of “peak onset” and 
“mid-greenup”, and “peak termination” and “mid-greendown” defined as the first day at 
which chlorophyll-a concentrations cross 15 and 50% of the in- or decrease preceding or 
following each peak (see Figure 2.a-b). In addition to this, we also extracted metrics of 
phenology in ways that are more commonly used in oceanography in which case periods 
of sustained in- and decrease in chlorophyll concentration were defined as periods in 
which the chlorophyll concentrations were above 1.05 times the median concentration in 
each year. Once these metrics of phenology were determined for each pixel, we then pro-
ceeded by determining the timing of “recurring algal blooms” which are defined as a clus-
ter of peaks of which the period of in- and decrease in chlorophyll-a concentration over-
laps strongly between years and between pixels. Trends of change in the timing of these 
blooms were then studied by studying changes in the median day of the year at which a 
peak occurred across all peaks belonging to a bloom (see Figure 2.c-d).  
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Natural variability between years can make it difficult to determine trends of change in 
phenology when time-series are short. As a data source, we therefore used mean chloro-
phyll-a concentrations from ESA Lakes v2.0.2 which combines data from different sen-
sors. We checked for consistency across sensors and determined trends of change in the 
timing of recurring algae blooms on a lake level with a focus on changes occurring in Lake 
Marken and 38 other lakes for which MERIS, MODIS-Aqua, and OLCI data are available. 

 

 
Figure 2 A novel method to determine changes in the timing of algae blooms. (a) A cubic spline (orange line) is fitted 
through daily estimates of Chlorophyll-a concentration (blue dots) for each lake pixel, and the timing (day of year) of 
peaks in chlorophyll-a concentration determined. (b) Related metrics of phenology are determined for each peak. (c) 
Peaks of which the period of in- and decrease in chlorophyll-a concentration shows a strong overlap with peaks in other 
pixels and/or in other years are clustered. We call these clusters of peaks recurring algae blooms. (d) Trends of change 
in the timing of these algal blooms over multiple years are determined. 

4.2 Models  
Models are recognized as crucial for biodiversity monitoring and assessment because 
they can help to synthesize and integrate large amounts of complex data, making it easier 
to identify patterns and trends in biodiversity across different spatial and temporal scales. 
They can be used to identify the drivers of biodiversity change, predict future trends, and 
assess the effectiveness of different management strategies. Combining models with re-
mote sensing data is often necessary to fully understand biodiversity patterns and trends. 
In the following chapter the models used within BIOMONDO are described. Whereas the 
Delft3D and the River Connectivity model are well known models and do not count into 
the novel methods of the BIOMONDO project the Heat Tolerance model is stated as a novel 
method and was implemented and tested for the first time within the BIOMONDO project. 

4.2.1 Delft3D 

Delft3D is a 3D modelling suite to investigate hydrodynamics, sediment transport and 

morphology, and water quality for fluvial, estuarine and coastal environments. These 

models require a large set of input data, and their performance heavily relies on the 
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accuracy and resolution of these input data.  The model performance may thus be im-

proved by improving the input data, for example by using EO based products, which has 

been explored and validated within BIOMONDO. These input data include the meteoro-

logical forcings over space and time, as well as the initial values of the state variables. The 

selected model application for the Markermeer is based on the open-source Delft3D soft-

ware of Deltares. Delft3D models are process-based models that are often used in a water 

management context. They combine different modules such as hydrodynamics, waves, 

and biogeochemistry that can be interconnected.  More details are given in the paragraphs 

below. 

 

Hydrodynamics (Delft3D-FLOW) 

Delft3D-FLOW is a multi-dimensional (2D or 3D) hydrodynamic (and transport) simula-
tion program which calculates non-steady flow and transport phenomena that result from 
tidal and meteorological forcing on a rectilinear or a curvilinear, boundary fitted grid.  

Typically, the output of the Delft3D-FLOW module provides not only information on wa-
ter transport, but also on salinity and temperature, but for this pilot only output on 
transport was generated.  

 

Boundary conditions/forcing functions required for the hydrodynamic model:  

- bathymetry  
- air temperature  
- irradiation 
- wind speed and direction 
- water discharges into the system (based on local measurements) 

 

Water Quality (Delft3D-WAQ) 

DELWAQ is the computational engine of the D-Water Quality and D-Ecology programmes 
of the Delft3D suite. It is based on a rich library from which users and developers can pick 
relevant substances and processes to quickly put water and sediment quality models to-
gether. 

State variables:  

- inorganic nutrients in the water column (NO3, NH4, PO4, Si)  
- dead organic material (C,N,P,Si) in both the water and the sediment 
- algae in the water column (various species)  
- oxygen  

 

Not explicitly included are floc formation, sulfur bacteria, aquatic plants, shellfish, zoo-
plankton (algae grazing by zooplankton is implicitly taken into account in the parameter 
setting of algal mortality). 

Considered processes:  

- algae processes (growth and mortality, respiration, competition, etc)  
- remineralization (in water column and soil)  
- (de)nitrification (in water column and soil)  
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- light extinction (due to silt, and other living & dead material in the water phase)  
- settling (of algae and detritus)  
- reaeration  

 

Required boundary conditions/forcing functions:  

- water transport (from hydrodynamic model) 
- water temperature (based on in-situ measured air temperature) 
- irradiation  
- wind speed 
- nutrient concentration of incoming water (based on local measurements for the 

year 2016) 
- suspended silt concentration (based on dynamically modelled silt field for the year 

2016) 
 

The model output is provided in the form of a netCDF-file containing various variables 
related to primary production e.g. chlorophyll a, light extinction, algae concentrations for 
different species (groups), and the total net primary production flux itself, as shown in 
Table 2.  

 
Table 2 Parameters of the Delft3D model output 

Variable Name Dimen-
sions 

Description 

mesh2d_Chlfa time, lat, lon Chlorophyll-a concentration (mg/m3) 

mesh2d_ExtVl time, lat, lon total extinction coefficient visible light (1/m) 

mesh2d_fPPtot time, lat, lon total net primary production (gC/m2/d) 

mesh2d_FDIATOMS time, lat, lon Freshwater Diatoms** (gC/m3) 

mesh2d_FFLAGELA time, lat, lon Freshwater flagellates** (gC/m3) 

mesh2d_GREENS time, lat, lon Green algae** (gC/m3) 

mesh2d_ANABAENA time, lat, lon Anabaena*(gC/m3) 

mesh2d_APHANFIX time, lat, lon N-fixing Aphanizomenon* (gC/m3) 

mesh2d_OSCILAT time, lat, lon Oscillatoria* (gC/m3) 

mesh2d_MICROCYS time, lat, lon Microcystis* (gC/m3) 

* Cyanobacteria, **Other algae 

4.2.2 Heat Tolerance Model  

Fish, like all organisms, have a range of temperatures within which they can survive and 
thrive. Heat tolerance refers to the upper limit of this range, beyond which fish may expe-
rience stress or mortality.  
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To model freshwater fish species’ physiological tolerance to water temperature, we re-
trieved species-specific data on heat tolerance (critical thermal maximum) from existing 
databases (Comte and Olden, 2017; GlobTherm by Bennett et al., 2018; Leiva et al., 2019) 
and a systematic literature review. Experimental heat tolerance values were standardized 
to a duration of 1 hour to correct for differences in experimental methodology. 

Next, we established a novel phylogenetic regression model that estimates the heat toler-
ance of a given species as a function of the species’ morphological and ecological proper-
ties, their phylogeny, and their ability to acclimate to heat. This approach accounts for the 
non-independence of data points, i.e., multiple observations per species, and the phyloge-
netic similarity between species (Figure 3A). We used the R package brms. Realm and 
length traits were collected from Fishbase (Froese & Pauly, 2022). Maximum habitat tem-
perature, habitat temperature variability and range size were retrieved from Barbarossa 
et al. (2021). We obtained the phylogenetic tree from the Open Tree of Life (OTL; 
https://tree.opentreeoflife.org/, tree version: opentree13.4). To incorporate phyloge-
netic relatedness in the predictions of species not present in the training data, we imputed 
the phylogenetic group-level effect for these species using the group-level effect of the 
species in the training data (using Rphylopars; Goolsby et al., 2017).  

We tested the predictive ability of different model configurations (i.e. variable included 
or excluded) based on phylogenetic blocking cross-validation (see Roberts et al., 2016) to 
evaluate how it performs for species that were not included in the model training. The 
phylogenetic blocking approach accounts for the introduction of new species with large 
phylogenetic distance from the species in the model training data. We divided the data 
over 10 folds (i.e. groups of species) using this approach (Figure 3B). Each fold is used for 
test data, while the rest is used to train the model. For the model testing, we removed 
observations if data was not available on one of the species traits, or if a species was not 
present in the phylogenetic tree. This resulted in a total of 2,406 observations across 334 
species. 

 

 
Figure 3 The phylogeny of the 334 fish species in the experimental dataset. A) Colours reflect variation in heat tolerance 
(CTmax; species average). The variation in heat tolerance shows a phylogenetic signal (lambda=0.89). B) The division 
of species over the folds for cross validation. 

 

From the cross-validation results, the model with the lowest RMSE averaged across the 
folds was chosen (Table 3). This model calculates heat tolerance using species-specific 
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information (maximum habitat temperature and random effects group-level value) of the 
species occurring at a site and acclimation temperature. As expected, the model performs 
better for species included in model training (RMSE = 1.79, MAE = 1.27), compared to 
species not included in model training (RMSE = 3.16, MAE = 2.50). It can explain 87.9% of 
the variation in the experimental heat tolerance data. The fixed effects alone explain 
48.5% of the variation. The model was then trained using all experimental data to predict 
heat tolerance of fish species. Using this model, heat tolerance can be predicted for 10,543 
freshwater fish species. 

 
Table 3 Average estimates and 95% posterior credible intervals of Bayesian posterior distributions for fitted parame-
ters of the heat tolerance model. Bayesian p-value based on the density at the maximum a posteriori (MAP) are also 
given. 

Parameter Mean esti-
mate 

2.5% 97.5% p(MAP) 

Random effects     

    Phylogeny 4.44 3.08 6.08  

    Species 1.31 1.11 1.51  

Fixed effects     

    Intercept 20.89 16.80 25.06 <0.001 

    Maximum habitat temperature 0.31 0.30 0.33 <0.001 

    Acclimation temperature 0.24 0.18 0.30 <0.001 

 

4.2.3 River Connectivity  

We studied historical and upcoming changes in river connectivity following a procedure 
co-developed by members of BIOMONDO and described in Barbarossa et al. (2020). This 
procedure results in an assessment of the degree of geographic range fragmentation 
across the entire Mekong basin, expressed as a connectivity index (CI) (range 0-1) where 
1 represents a range that is fully connected and smaller values indicating less connectivity. 
To calculate the connectivity index, species range data and dam locations are required as 
inputs. We used species range data from IUCN and point occurrence records from multiple 
sources (see Barbarossa et al., 2020). For the Mekong basin this included the geographical 
ranges of 783 lotic fish species. We used the dams data (n=107) from Schmitt et al. (2019), 
which includes info on location, status (Existing, Planned or under Construction), com-
mercial operation date, installed capacity, and dam height. The species ranges were refer-
enced to HydroBASINS subbasins (Pfaffstetter level 12). With the Pfaffstetter level 12 we 
used the highest level of spatial definition available, i.e., the smallest sub-basin units. Each 
of the sub-basins carries information on the connectivity to the next downstream sub-
basin, which allows to determine the total connected area within a main hydrologic basin. 
Dams falling within a sub-basin were georeferenced to the downstream boundary of that 
sub-basin so that isolated patches were a collection of HB sub-basin units. 
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The connectivity index is calculated based on the approach by Cote et al. (2009). First 
subbasin area is converted to stream length using Hack’s law. Then the total amount of 
stream length occupied by a species in each isolated patch is calculated. The CI is calcu-
lated by squaring these values and summing them and dividing this by the squared total 
amount of stream length a species occupied in the basin. For details and equations see 
Barbarossa et al. (2020). In general, the more isolated fragments, the lower the connec-
tivity (Figure 4). We differentiated between the effect on fragmentation on non-diadro-
mous and diadromous fish species (i.e. fish that travel between salt and freshwater), as 
we assume the most downstream dam to affect the connectivity of diadromous fish spe-
cies to a much higher extent. Therefore, the CI for diadromous species is dependent on 
the geographic range belonging to the most downstream isolated patch connected to the 
ocean (Figure 4). For diadromous fish species the CI is calculated by dividing the total 
amount of occupied stream length in the patch connected to the ocean by the total amount 
of occupied stream length in the basin. We aggregated the species-specific CI values over 
all species or species groups (diadromous/non-diadromous) to give an overall indication 
of connectivity in the basin. 

Furthermore, we explored the change in connectivity by using different dam subsets as 
input. We calculated the change in CI over time based on the commercial operation date 
of the dams. We also explored the effect of the removal of each individual dam on the CI. 

 

 
Figure 4 CI calculation for a hypothetical species s (occupying the gray areas) in a fictitious basin b (external solid line) 
partitioned in Hydrobasins subbasins (internal boundary dashed lines). The addition of dams fragments the basin in 
isolated patches (red hues with numbers). For each configuration, the CI is given for species s being either diadromous 
or non-diadromous. Note that the CI would not change for a diadromous species between the center and the right panel, 
even though the right panel contains more dams, as the connectivity for diadromous species is controlled by the most 
downstream dam (Barbarossa et al., 2020). 

4.3 Data Cube – Model Loop 
Biodiversity modelling is key to understand cause-effect relationships as well as analysing 
potential future trends through scenario experiments. We are linking models to primary 
EO data, by using those as driving forces and for parameterization.  

We combine the primary data from Earth Observation and the model in the BIOMONDO 
Freshwater Laboratory. The Data Cube – Model Loop is the novel method described in this 
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ATBD functioning as the interactive part between the Data Cube storing the data and mak-
ing the needed variables available to the Model. After running the model, the output vari-
ables will be implemented back into the Data Cube. 

4.3.1 Loop Architecture 

The scope of this precursor project is to implement, provide and test an initial BIOMONDO 
Freshwater Lab. We are using existing software, namely the xcube ecosystem of python 
tools and services, to implement basic functionalities, e.g. model and visualization inter-
faces.  

Jupyter Notebooks are an interactive and browser-based tool to process and visualize 
data via a programming language. The good structurability of the Jupyter Notebooks with 
code cells and additional text cells for documentation enables expert users to carry out 
data analyses. The programming language we use for the notebooks is Python 3.8. The 
BIOMONDO data cubes can be accessed via an interface from the Jupyter Notebooks to 
access the data and use it as model inputs. The outputs of the models are stored in sepa-
rate data cubes or are extending existing data cubes. This depends on the model output 
and the later use of the data cube. The final data cubes will be made available via the BIO-
MONDO Freshwater Lab. 

Figure 5 shows an example of the loop architecture for the heat tolerance model. The com-
plete loop is run in a Python Jupyter Notebook environment and a daily LSWT cube is used 
as input to the model. After the model is successfully run for various species the ouput is 
the input cube including the heat tolerance datasets for all available species in a data cube.  

 

 
Figure 5 Example of the Data Cube Model Loop 

4.4 Thematic Ecosystem Change Index 
Freshwater biodiversity is a key indicator of the overall health of freshwater ecosystems. 
Changes in biodiversity can be a sign of broader ecological changes, such as changes in 
water quality or habitat loss, which can affect the entire ecosystem. By monitoring 
changes in freshwater biodiversity, we can gain insights into the health and resilience of 
freshwater ecosystems and develop strategies for their long-term conservation. Quanti-
fying changes in freshwater biodiversity is important for understanding the impacts of 
human activities on freshwater ecosystems and developing effective conservation and 
management strategies. It is also critical for tracking progress towards global biodiversity 
targets and ensuring the long-term health and resilience of freshwater ecosystems. 

Thematic ecosystem change indices (TECIs) provide information on the extent and inten-
sity of changes in ecosystems. The developed TECIs in BIOMONDO are based on the 
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analysis of various data collected within BIOMONDO, e.g. EO data, models and ground 
monitoring, and are designed to capture changes in water quality, habitat conditions of 
fish or land cover that are associated with specific ecosystem processes, including eu-
trophication or urbanization. TECIs can provide valuable information for understanding 
the drivers and impacts of ecosystem change, as well as for monitoring progress towards 
biodiversity, conservation, and sustainable development goals. Some examples of TECIs 
include the habitat conditions for fish, which tracks changes in the heat tolerance of fish, 
cyanobacteria abundance and the lake surface water temperature. Other TECIs focus on 
specific regions or ecosystems, such as the Mekong River Basin, and are tailored to cap-
ture the unique drivers and dynamics of change in these areas. Overall, thematic ecosys-
tem change indices are an important tool for monitoring and understanding ecosystem 
change, and can support informed decision-making for biodiversity monitoring, conser-
vation, and sustainable development. 

Within BIOMONDO the experimental dataset outputs are made available in the BIO-
MONDO Lab, and the TECIs are derived by combining them to assess change in the fresh-
water ecosystem, including its local and wider surrounding. This also includes the ripar-
ian zone and the watershed, as well as the water body and the lake/riverbed. It is a very 
comprehensive characterisation of the ecosystem by a large number of different variables. 
However, the data comes at different times and contains “holes” in space where observa-
tions are not possible. We are using Machine Learning for deriving the TECIs.  

Machine Learning offers best options to  

• interpret phenomenon 

• identify the components of a trend 

• establish relationships between variables to identify causes of change 

• detect outliers 

• detect broken trends (e.g. due to disruptive anthropogenic change) 

• identify and characterise cyclicity and seasonality  

• predict its future values 

 

For freshwater ecosystem various TECIs are proposed and are shown in Table 4. All of 
them can be mapped to the original Essential Biodiversity Variable (EBV), biodiversity 
change driver and ecosystem function indicators (see Table 7 in Appendix). 

 
Table 4 Proposed TECIs for Biodiversity 

Novel EO Product (Thematic Ecosystem Change Index TECI) Reference to biodiversity re-
quirements (column “indica-
tor”) 

1 LCLU and its change in the riparian zone and catchment area 1, 3, 11, 21, 22, 41 
2 Water surface characterisation and evolution (status = perma-

nent or ephemeral, growing, shrinking, ice cover) 
1, 2, 5, 6, 27, 35, 37, 38, 42, 43, 
44, 47 

3 Water vegetation evolution 3, 15 
4 Water quality (Chl, TSM, TUR, Kd, CDOM) and lake water tem-

perature evolution 
7, 11, 13, 15, 18, 20, 23, 31, 32, 33, 
34, 36, 39, 40, 45, 46, 48 

5 Phenology (land) 11, 12, 19 
6 Phenology (water) 12, 19 
7 Bottom characterisation (macrophytes, sand) 8, 25 
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8 Habitat condition for fish 3, 4, 7 ,9 ,10 ,15 ,20 ,33 
9 Vitality ecosystem condition 4 ,7 ,9 ,10 ,14 ,18 ,20 ,32 ,33 

 

The TECIs describe important characteristics of aquatic ecosystems and, several of these 
characteristics are likely to correlate with global patterns of biodiversity in aquatic eco-
systems. While a high primary productivity in terrestrial ecosystems is, generally, as-
sumed to promote biodiversity, eutrophication, and algae blooms (also associated with a 
high productivity) are generally assumed to have a negative effect on aquatic biodiversity. 
To facilitate studies into such macro-scale relationships between the characteristics of 
aquatic ecosystems (as described by existing and the here proposed novel EO products) 
we developed novel products that contain information relevant for assessment of biodi-
versity and monitoring of changes. In addition, we expect observed environmental 
changes to be perceived as being particularly relevant when they are observed in areas of 
a high conservation value, e.g. when occurring in ‘hot spots’ of biodiversity and/or with a 
large number of rare species. An example of a study where EO data is used to study mac-
roscale patterns in terrestrial ecosystems can be found in Tuck et al. 2014.  

Anomaly detection, which involves identifying and analysing unusual patterns or events 
in data, can be a useful tool for monitoring and understanding changes in freshwater bio-
diversity. By detecting anomalous events, such as changes in species composition or dis-
tribution, we can better understand the drivers of change and develop more effective 
management strategies to protect these important ecosystems. Figure 6 shows that unsu-
pervised anomaly detection is a key element in the workflow for the TECI estimation. The 
consecutive steps will be explained separately.  

 

 
Figure 6 Workflow for TECI calculation and ecosystem change assessment. 

 

Data 
Various experimental datasets including EO and modeled data were compiled within the 
BIOMONDO project. A description of all experimental datasets can be found in the D.2.4 
(Table 1). 
The experimental datasets are the foundation of the TECIs and they have different ori-
gins, which indicates that the spatial and temporal extend of the datasets are not the 
same and can vary within each pilot site. Within the datasets, daily values which are 
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cloud influenced and therefore have spatial and temporal gaps, daily interpolated values 
and various temporal aggregations (monthly, yearly) are available. TECIs represent the 
change within an ecosystem and therefore we spatially aggregate the source data based 
on waterbodies or on a subbasin level for each waterbody defined by experts. As shown 
in Figure 6 each of the datasets take different subsequent steps.  

 
Preprocessing 
Daily cloud influenced datasets are interpolated after the spatial aggregation within the 
waterbody. For the interpolation a spline function constructed of piecewise third-order 
polynomials is used. Spline interpolation is a mathematical technique that involves fit-
ting a smooth curve to a set of data points, which can be used to estimate values be-
tween those points. This method is particularly useful in remote sensing applications for 
biodiversity analysis because it can help to fill in missing data, smooth out noise and 
gaps in the data. By using spline interpolation, we can gain a better understanding of the 
spatial and temporal patterns of biodiversity in remote sensing data, which is essential 
for effective conservation and management of these ecosystems. 
Daily datasets with already interpolated values, e.g. the warming tolerance model out-
puts described in Chapter 4.2 skip this step. 
 
As a second preprocessing step the climatologies of these datasets are calculated. The 
Radius Neighbour (RN) methodology is a technique used to calculate climatologies, 
which are long-term averages of various variables. This method involves selecting a tar-
get location and calculating the average value of the variable at that location based on 
data from its surrounding neighboring locations within a specific radius. By using this 
methodology, we can account for spatial variability in variables and obtain a more accu-
rate representation of the conditions at a given location.  

 
TECI Calculation 
The central methodology of the TECI estimation is the anomaly detection of the experi-
mental datasets. Datasets with calculated climatologies are deseasonalized by subtract-
ing the climatology from the actual timeseries of each variable. 
Each TECI estimation is calculated with Isolation Forest, a multivariate unsupervised 
machine learning algorithm, calculating the anomalies based on the relationships be-
tween all available variables within the TECI (Table 4). 
 
The Isolation Forest is a popular machine learning algorithm for anomaly detection, 
which works by isolating observations that are anomalous from the rest of the data. It is 
a tree-based algorithm that randomly selects a feature and a random split value to cre-
ate a decision tree. The process is then repeated until each observation in the data is iso-
lated into its own tree. 
 
The steps of the Isolation Forest methodology are as follows: 
 

1. Random selection of a feature: At each step of the algorithm, a random feature is 
selected from the dataset. 
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2. Random selection of a split value: A random value within the range of the se-
lected feature is chosen as the split value. 

 
3. Creation of a decision tree: A decision tree is created based on the selected fea-

ture and the split value. 
 

4. Recursive partitioning of data: The algorithm then recursively partitions the data 
into smaller subsets based on the split value until each observation is isolated 
into its own tree. 

 
5. Scoring of anomalous data: The anomaly score for each observation is calculated 

by averaging the path length required to isolate the observation across all the de-
cision trees. 

 
6. Identification of anomalies: The observations with the highest anomaly scores 

are considered to be the most anomalous and are identified as such. 
 
The key advantage of the Isolation Forest algorithm is that it can efficiently detect anom-
alies in large datasets without requiring extensive computation, making it suitable for 
real-time applications. Additionally, it can detect anomalies in both continuous and cate-
gorical data and is robust to outliers and noise. 
 

The Isolation Forest returns an anomaly score for each data point without the infor-
mation on which variable had the highest impact on the anomaly score. The anomaly 

score for a data point represents its degree of abnormality or outlierness relative to the rest of 

the dataset. The anomaly score ranges from 0 to 1, with higher scores indicating greater ab-

normality or outlierness. For biodiversity assessments it is important to know which vari-
able is mainly affecting the anomaly. SHAP (SHapley Additive exPlanations) values are a 
type of feature importance measure in machine learning that provides a way to explain 
the output of a model in terms of the contribution of individual features to the predicted 
outcome. The SHAP value for a particular feature represents the average marginal con-
tribution of that feature to the predicted outcome across all possible subsets of features 
in the model. In other words, SHAP values provide a way to quantify the relative im-
portance of each feature in the model by measuring how much each feature contributes 
to the predicted outcome, taking into account the interactions between features. The 
SHAP value, from now on called feature importance measure, provided by the Isolation 
Forest algorithm is based on the number of times a feature is selected for splitting across 
all the trees. The more frequently a feature is selected, the higher its importance score. 
Therefore, the feature importance measure can be used to identify the most relevant fea-
tures that contribute to the detection of anomalies in the dataset. The range of feature 
importance measure depends on the specific machine learning model and feature set be-
ing analyzed. The magnitude and sign of the feature importance measure for a particular 
feature indicate the extent to which that feature contributes to the prediction made by 
the model. It's important to note that feature importance measures are not limited to 
any specific range or scale, as they are calculated based on the unique features and 
structure of the model being analyzed. However, feature importance measures are 
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typically normalized to make them more interpretable and easier to compare across dif-
ferent features and models. 

Ecosystem Change Assessment and Interpretation 
The final step of the TECI estimation is the ecosystem change assessment where the TECIs 
can be used for ecosystem change evaluation by calculating the feature importance. The 
feature importance measures (SHAP values) are stacked and are called the TECI score. 
The TECI scores are visualized in a bar plot showing the change index over time for each 
variable. Interpreting these TECI scores is challenging, and need to be supported by ex-
pert interpretations as the TECI score is based on stacked values of multiple features im-
portant measures. The more variables a TECI has the higher the overall TECI score can be. 
Although the feature importance measure of each variable is normalized and comparable 
towards other variables within the same TECI, there is no fixed range a TECI score can 
adopt. The TECIs are an innovative method and therefore more knowledge is gained 
throughout the process and during the next phases of BIOMONDO. 

 

Figure 7 shows the TECI Score of TECI 8 – Habitat Conditions for Fish in Granfjärden Mä-
laren for the summer months. Four variables are included, and each variable shows a 
unique feature importance. All scores stacked together make up the overall TECI scores 
showing that the years 2018 and 2020 have the highest probability for anomalies. The 
overall focus is based on data for the fish Osmerus eperlanus, indicating changes in the 
habitat condition for this species. 
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Figure 7 Score of TECI 8 – Habitat Conditions for Fish, Granfjärden Mälaren 

 

Figure 8 shows the TECI score for TECI 4 – Water Quality in the Markermeer for the spring 
months. The available parameters for this TECI are the chlorophyll-a concentration, tur-
bidity, and the lake surface water temperature. The score shows that the years 2013, 2016 
and 2018 show the highest probability of anomalies within the water quality. The single 
TECI value of each variable show that especially the lake surface water temperature in-
fluences the overall TECI score in 2013 and 2018. For 2016 the TECI value shows that 
mainly turbidity is the anomaly driver. 

 

 
Figure 8 Score of TECI 4 – Water Quality, Markermeer 

 

The validation of such highly synthetic TECIs is challenging because they are integrative 
values describing a temporal pattern in a multi-dimensional dataspace. The traditional 
concept, where the same quantity is measured from space and in-situ, and where valida-
tion means to compare those coincidently made measurements, does not apply here. The 
TECIs indicate a certain quality of an ecosystem, and we propose a certain mathematical 
method to derive it. Algorithm validation is applied at two levels: (1) we ensure that our 
experimental datasets are validated appropriately. The validation performed on the da-
tasets are descripted in D2.3 (Table 1). (2) Expert knowledge can be used as a validation 
method for the TECIs. The judgment of an expert is needed to confirm the accuracy or 
validity of a particular result or prediction. Experts of each pilot site can assess the TECI 
scores of the algorithm and confirm whether they are consistent with their knowledge 
and experience of the ecosystem changes being studied. This can help to identify any er-
rors or biases in the algorithm and improve the accuracy of the analysis. Expert validation 
also helps to identify any areas where further investigation or data collection is needed to 
improve the analysis. 

While indicators can be useful tools for assessing environmental conditions and informing 
management decisions, they should be interpreted with caution.  
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1. The TECI value may not accurately reflect the full complexity of the system being 
monitored. Simplifying complex environmental processes into a single indicator 
can lead to oversimplification and loss of important information. 

2. TECI values may be influenced by factors that are not directly related to the envi-
ronmental condition being measured. For example, changes in sampling fre-
quency, location, or methodology can affect indicator values, even if the underlying 
environmental condition remains unchanged. 

3. TECI values may not be appropriate for all contexts or ecosystems. Indicators de-
veloped for one ecosystem may not be relevant or appropriate for another, and 
may not capture the unique ecological processes and stressors present in the new 
system. 
 

Currently the TECIs are derived on a set of variables retrieved within the BIOMONDO pro-
ject. These variables depend on the availability of operational EO datasets and models de-
scribed in this document. Increasing the number of variables within TECIs can improve 
estimations for several reasons. Incorporating more variables allows for a more compre-
hensive representation of biodiversity change in an ecosystem and the environmental fac-
tors that influence it. This can lead to a more accurate and nuanced understanding of how 
biodiversity is changing over time. More variables can increase the sensitivity of the index 
to changes in biodiversity, making it more likely to detect changes even when they are 
subtle or occur over short time periods. Including more variables can help to reduce bias 
in the index by accounting for a wider range of environmental factors that may be influ-
encing biodiversity, rather than relying on a limited set of variables that may not fully 
capture the complexity of the ecosystem. 

 

The status of the TECI data readiness can be seen in Table 5. For each TECI a set of avail-
able and reliable indicators was set and the readiness of the data covering the indicator 
was colored. Two states are mentioned: 

• Ready-to-use (green): Data is processed and stored in a data cube or vector file. 
• Not planned (grey): Indicator is not selected for any pilot study or was discarded 

due to missing algorithms or data sources. 
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Table 5 Data Readiness for the TECIs 

 

TECIs   
1 

LCLU and its change 
 in the riparian zone 
 and catchment area  

2 
Water surface characterisation  

and evolution 
4 

Water quality and LSWT evolution 
6 

Phenology 
(water) 

8  
Habitat Condition 

 for Fish 
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5 Pilot Applications 

The aim of the BIOMONDO Freshwater Pilots is to address scientific and policy priorities 
in freshwater biodiversity and vulnerable ecosystems by demonstrating how novel Earth 
Observation and Biodiversity modelling products can be integrated to address the 
knowledge gaps in biodiversity monitoring, modelling and assessment and to enhance 
decision support systems. Three pilots have been developed and are described in chapters 
5.1-5.3. 

5.1 Pilot 1 – Eutrophication 
Nutrient concentrations have increased substantially in lakes and rivers throughout the 
world, resulting in eutrophication, harmful algal blooms, loss of submerged macrophytes 
affecting sedimentation and turbidity, and biodiversity loss.  

In this BIOMONDO pilot we explore the possibilities of integrating EO data into the 
Delft3D model suite to investigate the potential contribution by EO data to the model per-
formance. We also demonstrate the use of EO based phenology metrics to study effects of 
eutrophication.  

5.1.1 Use of EO data for model input 

For pilot site Markermeer, the water quality module (Delft3D-WAQ) is connected with the 

hydrodynamic module (Delft3D-FLOW) to simulate algae dynamics and transport. The 

hydrodynamic model for the Markermeer was run for the year 2016. The hydrodynamic 

results for the year 2016 have also been used as input for the other years (2020 and 2021) 

for which the water quality model was run. The hydrodynamic calculations were carried 

out using a 3D model. However, to speed up the computation of the water quality model, 

the hydrodynamic results were aggregated to a 2D grid, which has only a limited impact 

on the results since vertical stratification events hardly occur in this shallow lake. The 2D 

Delft3D-WAQ model was run for the (entire) years 2016, 2020 and 2021. Meteorological 

input data was obtained from the nearest meteorological station for the same years. 

 

The model results were reprojected to the data cube grid latitude and longitude using the 

nearest neighbour method. For every latitude, longitude and day the parameters in Table 

2 were generated. Results regarding chlorophyll-a and total net primary production have 

been used to assess the model performance (see D2.3 PVR document) and the impact of 

using an EO-based temperature forcing (see section below). 

 

In the early stages of the pilot development, it was assessed which EO based products 

would be suitable to improve the input data. Although chlorophyll-a might seem like a 
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good candidate, this is not a state variable in the model but rather a postprocessed output 

derived from the modelled algal biomass and species composition (which themselves are 

not available as EO-products). EO based chlorophyll-a was however used to validate the 

model. Another promising candidate to provide EO based input data would be suspended 

sediment concentration, but this was not part of the BIOMONDO EO products for Lake 

Markermeer. Finally, it was decided to use the EO based surface water temperature as 

input to the model. In the original set up of the Markermeer model, the water temperature 

was based on in situ measured air temperatures from the nearest station of the Royal 

Dutch Meteorological Institute (KNMI). Supposedly, the EO based surface water temper-

ature is closer to the actual water temperature than the air temperature measured in 

(semi) distant onshore location. Also, the EO-data provides information on the spatial var-

iability that is not provided by measurements in a single location. Hence, using the EO 

based temperature forcing is expected to improve the model performance.   

 

The components of all methods use in the pilot are demonstrated in Figure 9. 

 

 
Figure 9 Overview of Pilot 1 components and workflow 

 

To investigate the congruence between model results and observations (EO and in situ 
data), a comparison of the modelled chlorophyll a with the EO chlorophyll products was 
made for the years 2016 and 2020 and with in situ primary production measurements for 
2020 and 2021. EO and model data were plotted against time to show the calculated and 
observed chlorophyll-a concentrations. Validation results with in situ data are discussed 
in the D2.3 PVR document. 

 

EO data corresponding to chlorophyll a was used to compare with the model data for the 
whole year at two sites: at the central station of the lake and in the south at Pampus Oost 
(Figure 10). The modelled chlorophyll a concentration showed a reversed pattern in time 
as compared to EO data (Figure 11). This mismatch is thought to be due to the relatively 
high inorganic matter concentrations in this lake since growing algae in spring and sum-
mer attach to these suspended solids, they then sink to the bottom. This continues during 
the whole spring and summer period, leading to an accumulation of algae at the bottom 
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of the lake. They remain there until they are resuspended in the winter due to high wind 
conditions. In situ data of chlorophyll-a shows the same pattern as the EO data. However, 
when looking at the primary production flux (no EO data for this), the model is in quite 
good agreement with in situ data, suggesting that the observed chlorophyll is not active 
and/or not contributing to primary production.  

 

 
Figure 10 Locations in the Markermeer used to compare EO and model data (Pampus Oost and Central Station). 
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Figure 11 Comparison of CHL-a concentrations in 2016 between EO and model data for two locations (middle of the 
lake (upper figure) and south (lower figure) in the Markermeer. 

 

As explained above, to improve the model performance regarding the modelled primary 
production, EO temperature products were used as a direct input into the Delft3D-WAQ 
model. To this end, the spatially and temporally varying EO temperature product is used 
to force the water temperatures in the model, while in the original set up of the model, the 
water temperature was based on in situ measured air temperatures from the nearest sta-
tion of the Royal Dutch Meteorological Institute (KNMI). Note that the EO-based forcing 
was only available up to September 2020. In contrast to the spatially and temporally var-
ying EO-based forcing, the original in situ based forcing consisted of a temporally varying 
but spatially homogeneous forcing function. A comparison of the two forcing functions 
showed that the two forcings show similar temperature ranges as well as similar seasonal 
patterns (Figure 12). However, the EO-based temperature field includes less temporal 
variation than the situ-based temperature field and shows slightly higher temperatures 
in summer. Also, in 2020 it shows slightly lower temperatures in winter. These 
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differences may be caused by the inertia of the water system, which may make it slow to 
respond to changes in ambient air temperatures. 

 

 
Figure 12 Water temperature as included into the Delft3D-WAQ model of the Markermeer based on in situ data (blue) 
or EO products (yellow) in the year 2016 (upper panel) and 2020 (lower panel), both spatially averaged for the area 
‘Markermeer Midden’.  

 

Next, the impact of using EO temperature products as a forcing for water temperature on 
the modelled primary production was assessed. Model results show that using an EO-
based temperature forcing in the model resulted in a slightly higher primary production 
in summer, and an overall decrease of the temporal variation in the calculated net primary 
production (Figure 13). This is a direct effect of the higher temperatures in summer and 
the smaller temporal variation in the EO-based temperature forcing. However, at a few 
moments in time, the modelled PP based on EO forcing shows peaks of high temporal var-
iability that are not occurring in the temperature forcing. Also, the EO-based forcing 
causes the spring bloom to start earlier (most clearly visible in 2016). This is caused by 
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the slightly higher temperatures occurring in early spring when sufficient light is available 
to start the bloom. Clearly, small differences in forced temperatures may cause indirect 
and/or disproportional changes in primary production, which may be very relevant for 
the higher trophic food web. Because the temporal overlap of the modelled PP on basis of 
EO forcing and the in situ measured PP is too small, we cannot say whether the EO-based 
forcing improves the performance of the modelled primary production.  
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Figure 13 Net primary production as modelled by the Delft3D-WAQ model for the Markermeer in the area ‘Markermeer 
Midden’ for 2016 (upper panel) and 2020 (lower panel) using in situ data (blue) and EO products (yellow) as a forcing 
for water temperature in the model.  

5.1.2 Use of EO data for phenology assessments 

One of the most visible impacts of lake eutrophication is a change in the size and duration 
of algal blooms which can be assessed using the phenology metrics described in section 
4.1.3. Very large algal blooms that covered more than 80% of the lake (i.e. the fraction of 
pixels in which a peak was detected) were observed in February-March over the years 
2001-2007, while this recurring pre-spring bloom and started earlier (January-February) 
and declined in size over the years 2008-2010. At the same time, a large summer bloom 
(June) appeared in the year 2010 which covered nearly 70% of the lake (see Figure 14). 
This analysis will be further extended over the years 2001-2021 once the new ESA Lakes 
v.2.1 is made available to us. This new release includes improved quality control flags that 
may benefit our analysis and combines MERIS, MODIS-Aqua, and OLCI data and will help 
us to compare results with those in section 5.1.1. 
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Figure 14 Trends of change in the timing of Algal blooms (as in Fig. 2.d) as observed in lake Marken using OLCI data. 
Trends of change in the timing of algal blooms (as in Fig. 2.d). The early-spring bloom (January-March, approximate day 
of year 10-90) is indicated in green, while the summer bloom is indicated in orange (June, approximate day of Year 140-
160). (b) The size/area covered by these algal blooms in terms of the fraction of pixels in which a peak is detected. 
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5.2 Pilot 2 – Heat Tolerance of Fish 

Lake surface water temperatures have been rising rapidly globally. Additionally, lake heat 
waves intensity and duration are expected to increase with future climate change, exac-
erbating the effects of long-term warming.  Lake ecosystems are vulnerable to these tem-
perature changes: directly by pushing to or exceeding species and ecosystems limits of 
resilience, and indirectly through for example decreasing amount of oxygen in the water, 
altering stratification or algae blooms altering oxygen availability. 

 
Figure 15 Overview of Pilot 2 components and workflow 

 

The objective of this BIOMONDO pilot is to explore the possibilities of using a combination 

of EO data on LSWT and thermal tolerance of freshwater fish species to quantify the im-

pacts of increases in temperature and heat waves on freshwater fish diversity. Heat toler-

ance is calculated using species-specific information (maximum habitat temperature and 

random effects group-level value) of the species occurring at a site and acclimation tem-

perature. Acclimation temperature is taken as the average LSWT 14 days prior. The heat 

tolerance of a certain day is then compared to the LSWT of that day. The difference be-

tween these values shows whether the LSWT exceeds or approaches the heat tolerance, 

and is called the warming tolerance (i.e. how close current conditions are to their thermal 

limits; Clusella-Trullas et al., 2021). 

5.2.1 Lake Marken 

For Lake Marken daily LSWT data was generated (see Chapter 4.1.2) from September 

1999 up to and including August 2020. We retrieved the warming tolerance across time 

and space for 28 freshwater fish species occurring in Lake Marken. The warming toler-

ance is defined as the difference between the LSWT and the upper thermal limit (heat 

tolerance) of a fish. The warming tolerance shows whether the LSWT exceeds (negative 
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values) or approaches (low values) the heat tolerance, i.e. how close current conditions 

are to their thermal limits (Clusella-Trullas et al., 2021).  

Across the years and throughout the lake, fish species experienced different values of 
warming tolerances. The lower the warming tolerance, the closer the temperature is to 
the heat tolerance, and the more vulnerable a species is to heat exposure. Comparing the 
vulnerability among species (Figure 16), the European smelt (Osmerus eperlanus) is most 
susceptible to heat. This corresponds to findings of local experts and fishermen (Joep de 
Leeuw, 2022; Noordhollands Dagblad, 2018). We can also see that for all species the heat 
tolerance was not exceeded during the studied period (no negative values of the warming 
tolerance). Although this would mean no fish were killed directly due to high temperature, 
approaching the heat tolerance can still be problematic. When water temperatures ap-
proach a fish’s heat tolerance, this can affect growth, reproduction, immunity, and the 
ability of an individual to cope with additional stressors (Sadoul & Vijayan, 2016; McArley 
et al., 2017; Alfonso et al., 2021). 

 

 
Figure 16 Warming Tolerance in the summer months 2000 – 2020 (JJA) for all species abundant in Lake Marken (central 
station) 

 

Focussing on the European smelt, we can see the average warming tolerances per month 
across the lake in Figure 17. As expected, especially in the summer months the heat toler-
ance is approached by the LSWT (warming tolerance is low). Throughout the years, the 
period of high vulnerability seems to extend from 2 to 3 months (June-August) to 3 to 4 
months (May-September). However, these are lake averages, so extremes in warming tol-
erance across the lake and throughout the month could cancel each other out. 

In a report by IMARES (Institute for Marine Resources and Ecosystem Services; 2007), 
summer fish die-off of the European smelt was described. There are no documented 
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observations, but interviews mention disappearance of the species in August 2003 during 
high LSWT (>25 °C), July/August of 2006, and June 2007 (though it was relatively cool 
summer). Although in Figure 17 we can see that the warming tolerance of smelt is small 
during the summers of 2003 and 2006, these years do not stand out compared to other 
years. IMARES imply that summer die-offs occur at high temperatures when, especially in 
combination with algae blooms, low oxygen levels occur, but high temperatures do not 
directly cause the fish deaths. This can explain why we do not see a direct or noticeable 
threat of temperature in relation to heat tolerance during these summers.  

There has not been any recent documentation of smelt fish kills, primarily due to the low 
smelt abundance during recent years so it would be less noticeable. On the other hand, 
summer die-offs might occur less often due less algae blooms and therefore less decrease 
in oxygen levels. Moreover, smelt can escape to relatively cool deep wells, which increased 
in number due to sand extraction (de Leeuw, 2022). The possibility to escape to deeper 
areas is the most plausible explanation, as the lake surface temperatures across the lake 
do not provide refuge, as for example can be seen by the homogeneous distribution of 
warming tolerance in 2003 in Figure 18. 
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Figure 17 Average monthly warming tolerance (average across the lake) for Osmerus eperlanus in Lake Marken. 
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Figure 18 Spatial variability of warming tolerance for Osmerus eperlanur in Lake Marken (2003), average warming 
tolerance for the spring and summer months. 

 

5.2.2 Lake Mälaren 

Figure 19 shows species warming tolerances experienced in (central) Lake Mälaren 
throughout September 1999-October 2020. According to local experts smelt, vendace and 
perch would be most susceptible to high temperatures (Axenrot & Sandström, 2022). 

Vendace (Coregons Albula) and smelt (Osmerus eperlanus) also show the lowest warm-
ing tolerance in our results. The heat tolerance was not exceeded by the LSWT for any fish 
species at this chosen central point in the lake.  



 

 

 

 

 43 / 70 

 

 
Figure 19 Warming Tolerance in the summer months 2000 – 2020 (JJA) for all species abundant in Lake Mälaren (cen-
tral station) 

 

Looking at the average monthly warming tolerance averaged across the lake for smelt, 
(Figure 20) we can see that during the summer months, especially June and July, the 
warming tolerance is lowest and the threat of high temperatures is highest. In the summer 
of 2018 massive fish-death due to high temperatures occurred across Swedish lakes, in-
cluding Lake Mälaren (Mitt i, 2018; Axenrot & Sandström, 2022). Although this summer 
shows high temperatures with relatively low warming tolerance value (see Figure 20 and 
Figure 21 for smelt as an example), it does not stand out compared to other summers. The 
fish deaths are suspected to be caused by high temperatures and the accompanying lack 
of oxygen as the water gets warmer. Mikael Svensson (SLU) explains in Mitt i (2018): ´The 
fish get stressed, the metabolism goes up and they want to consume more oxygen than is 
available.” Though the fish deaths may not be directly caused by an exceedance of the heat 
tolerance, the water temperatures approaching a fish’s heat tolerance will cause stress 
and affect the ability of an individual to cope with additional stressors (Alfonso et al, 
2021). This is probably what occurred in 2018, with the lower oxygen levels as additional 
stressor. 
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Figure 20 Average monthly warming tolerance (average across the lake) for Osmerus eperlanur in Lake Mälaren. 
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Figure 21 Spatial variability of warming tolerance for Osmerus eperlanur in Lake Mälaren (2018), average warming 
tolerance for the spring and summer months. 

 

We received abundance data from fish surveys at three locations in the lake (Figure 22) 
taken yearly in September (Axenrot, T. (2020)). We compared these results to both the 
warming tolerance and remotely sensed chlorophyll-a measurements and cyanobacteria 
abundance (Schaeffer et al. 2022, Matthews et al. 2015) throughout the summer. We in-
cluded chlorophyll a and cyanobacteria here, as these are known to be affected by tem-
perature change and blooms can decrease the amount of available oxygen. Overgrowth of 
algae consumes oxygen and blocks sunlight from plants under water. When the algae die, 
the decay decreases the amount of dissolved oxygen further. This can cause hypoxic 
zones, in which fish may not be able to survive. 
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Figure 22 Location of the three transects of fish surveys in Lake Mälaren. At Granfjärden (Granfj) and Görväln the lake 
is shallower compared to Prästfjärden. At Granfjärden high Chl a concentrations and blooms are regular phenomenon. 

 

We now take a closer look at the results for smelt (Osmerus eperlanus) at the Granfjärden 
transect (Figure 22, Figure 23). We see a decrease in fish abundance between October 
2017 and September 2018, an increase towards September 2019, followed by a decrease 
in the next year. The summers of 2018 and 2020 are characterized by many alerts of cya-
nobacteria, relatively low values of warming tolerance during large periods of the sum-
mer, and high concentrations of chlorophyll a compared to the summers of 2017 and 
2019. In the summer of 2020, we can see warming tolerance and chlorophyll a show a 
clear opposite trend, which is possible as they both are influence by water temperatures. 
During periods of high temperatures, the warming tolerance is lower, and chlorophyll-a 
and cyanobacteria can bloom resulting in higher concentrations and alerts respectively. 
The results may indicate an influence of temperature dependent threats (i.e. absolute wa-
ter temperature and oxygen depletion) on species abundance during the summers of 
2018 and 2020. 
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Figure 23 Chlorophyll-a, cyanobacteria abundance, fish abundance of smelt and warming tolerance of smelt at the 
Granfjärden transect for the summers of 2017, 2018, 2019 and 2020. Fish abundance data boxplots show measure-
ments across the transects in September of the specified year. Warming tolerance (in red) and chlorophyll-a concentra-
tions (in green) are given per observation (average across the transect, plus symbol) and as a weekly average (line). 
The occurrence of a cyanobacteria abundance is indicated with diamonds.   

 

The fish survey data indicated lower abundances of Osmerus eperlanus in 2018 and 2020. 
To explore if these observations can be detected by the developed TECI’s, TECI 8 – Habitat 
Conditions for Fish was generated for Granfjärden and plotted in Figure 23.   These obser-
vations are also visible in the TECI scores (Figure 24), as the summers of 2018 and 2020 
corresponds to show higher TECI scores compared to the other years, indicating high 
probabilities that these years have higher certainties of anomalies and also that the chlo-
rophyll-a concentration and cyanobacteria abundance contribute the most to this higher 
TECI score. 
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Figure 24 TECI results at Granfjärden for the summers of 2016, 2017, 2018, 2019 and 2020. Shown are the stacked TECI 
results of Cyanobacteria (red), Chlorophyll-a (green), warming tolerance of smelt (orange) and LSWT itself (pink). 

 

5.2.3 Lake Balaton 

The warming tolerance was also calculated from September 1999 up to and including Oc-
tober 2020 for 33 fish species in Lake Balaton (Specziár & Erős, 2020; species scientifi-
cally sampled or recorded on a photograph by citizens in 2018). The results on warming 
tolerance are available.  
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5.3 Pilot 3 – River Dams 
In this pilot, we focus on the impact of river dams on freshwater ecosystems at river catch-
ment scale. More specifically, the objective of this BIOMONDO pilot is to explore the pos-
sibilities for combining EO data and biodiversity modelling for monitoring and assessing 
the impact of dam construction and removal on biodiversity. 

 

 
Figure 25 Overview of Pilot 2 components and workflow 

 

Obstacles such as dams and other human-made waterworks heavily alter and interrupt 
dispersal routes of many species. Freshwater ecosystems are particularly sensitive to 
such a ‘loss of connectivity’ because: 1) there is little exchange of organisms between river 
basins, and 2) dispersal is constrained by the dendritic (tree-like) structure and direc-
tional flow of river networks. In addition, river dams and other waterworks affect water 
quality and disturb the natural flow regimes and habitat extent of aquatic and semi-
aquatic species. Within this context, a reduction of sediment flows that may reach river 
deltas is of particular importance, because they may disappear due to ongoing processes 
of subsidence and erosion without the ongoing inflow of sediment from the wider catch-
ment area. We aim to study these multiple, simultaneous effects of river dams, including 
differences in these effects between different types of dams. Ultimately, our findings 
should contribute to a decision framework that helps to weigh the pros (i.e. in terms of 
energy production) and cons of (different types of) individual river dams and their place-
ment within a river basin (e.g. as in Schmitt et al. 2018). 

We chose the Mekong delta as the primary site for this pilot because a lot of relevant 
changes have occurred in this delta in the period for which EO data are available. 

5.3.1 Fragmentation of the Mekong basin 

We studied historical and upcoming changes in river connectivity following a procedure 
co-developed by members of BIOMONDO and described in Barbarossa et al. (2020). This 
procedure results in an assessment of the degree of geographic range fragmentation 
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across the entire Mekong basin, expressed as a connectivity index (CI) (range 0-1) where 
1 represents a range that is fully connected and 0.5 results from a dam dividing a range 
into two equally sized fragments. Changes in the geographic range connectivity as new 
dams were built since the 1960s were estimated (see Figure 26).  

While the cumulative installed capacity has increased in a relatively steady manner, there 
were relatively large drops in connectivity in e.g. 1994 and 2019. Drops in mean connec-
tivity were from 94 to 85 and from 73 to 60, respectively, while the gains in installed ca-
pacity were relatively small, i.e. 136 and 3670 MW (see Figure 26). This suggests that the 
impacts of some dams on connectivity is much larger relative to their energy production 
when compared to other dams.  

 

 
Figure 26 Mean Connectivity Index (CI, in percent) and the total energy production by river dams (i.e. the Cumulative 
Installed Capacity, CumIC) over the years in the Mekong delta. 

 

This finding was further explored by an analysis of the impact of individual dams on the 
connectivity of the Mekong basin, which was studied by determining the impact of the 
removal of a single dam (from a set including existing dams and dams that are currently 
under construction) on the average connectivity of all, diadromous, and non-d diadro-
mous fish species. We found that, in particular, the removal of the Don Sahong dam would 
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increase the average connectivity substantially: across all species from 0.611 to 0.686, 
from 0.767 to 0.852 for diadromous species and from 0.599 to 0.675 for non-diadromous 
species. For example, there may also be substantial differences in impact between diad-
romous and non-diadromous for particular dams. For example, removal of the Pak Mun 
dam would increase average connectivity to 0.648, 0.768, and 0.639, for all, diadromous, 
and non-diadromous species respectively. Removal of the Pak Mun dam would thus 
mainly affect the average range connectivity of non-diadromous species while it has 
hardly any effect on the connectivity of diadromous species. On average, the removal of a 
single dam would lead to an increase in average connectivity to 0.614, 0.769, and 0.603 
for all, diadromous, and non-diadromous fish species. In most cases, the removal of a sin-
gle dam thus has only a limited impact on the range connectivity of fish species. 

5.3.2 Impact of river dams on water quality within the Mekong Basin 

Remote sensing is a valuable tool that can be used to monitor changes in sediment 
transport caused by the construction of dams. In this pilot EO data is used to analyse 
changes in the colour and turbidity of the water. Sediment-laden water is typically more 
turbid and has a different colour than clear water. By analysing satellite images of the 
river it is possible to detect changes in water colour and turbidity that may be indicative 
of changes in sediment transport. Four dams were selected as a primary case study based 
on Schmitt et al., 2018 for further investigation (Table 6).  

 
Table 6 Case study dams 

Dam Operating 
since 

Height River country 

Xe Kaman 1 Dec. 2017 120m Xe 
Kaman 

Laos 

Lower Se San 2 Dec. 2018 75m Se San Cambodia 

Xe-Pian,Xe-Namnoy Dec. 2019 74m Sekong Laos 

Nam Giep 1 Sep. 2019 167m Ngiep Laos 

     

HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives) is a 
mapping project developed by the World Wildlife Fund (WWF) and the US Geological Sur-
vey (USGS) that provides a comprehensive and consistent set of global hydrological data 
and maps. One of the main outputs of HydroSHEDS is the delineation of hydrologic basins 
or watersheds across the globe. The basins for the pilot 3 analysis were retrieved from 
this database (Wickel et al. 2007). Within the BIOMONDO team we decided to create sub-
basins based on the Level 12 HydroSHEDS basins which touched by the reservoir of each 
dam. Figure 27 shows an example of the created subbasin for Xe Pian Xe Namnoy. 
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Figure 27 BIOMONDO subbasin (red) of the Xe Pian Xe Namnoy dam based on the HydroSHEDS Level 12 basins 
(grey). All basins touched by the reservoir are considered. 

 

To investigate the impact of river dams on the river water quality we analysed the EO 
based Forel Ule Value (FUV, Ch. 4.1.1.2). Figure 28 shows the water colour (FUV) of the 
Lower Se San2 downstream river water. The heatmaps shows that for the years 2018-
2020 the colour was more blueish compared to the earlier year. The first turbine for the 
Lower Se San 2 began producing electricity in December 2017. It is assumed that with the 
operational start of the dam the sediment transport decreased, which also decreased the 
brownish colour of the water. The Forel Ule values of 0-5 correspond to turbidity values 
of 0-20 FNU and is increasing with Forel Ule values from 16-21 corresponding to values 
of >100 FNU. 
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Figure 28 Forel Ule Value of the Lower Se San 2 BIOMONDO subbasin 

 

Similar results can be investigated within the subbasin of the Nam Giep 1 dam. The Forel 
Ule value prior to September 2018 show that there is a drastic change in the water color 
of all subbasin water pixel. The Nam Giep reservoir has FU values around 2-4 showing 
mainly clear water pixel. 
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Figure 29: Forel Ule Value of the BIOMONDO subbasin of Nam Giep 2 

 

Remote sensing transect analysis of rivers is a powerful technique that can be used to 
study changes in sediment transport over time. The transect analysis is particularly useful 
for studying changes in sediment transport caused by human activities, such as the con-
struction of dams or changes in land use. These activities can alter the natural flow of 
water and sediment in a river, leading to changes in channel morphology and sediment 
deposition pattern. 

A transect analysis was performed on the studied dams in Table 6. The transect included 
river parts down and upstream of the dam. The changes in the turbidity and the water-
color were analysed comparing different years. Figure 30 shows both parameters over 
the longitude of the transect and the different years. Both parameters show that earlier 
years had higher turbidity values and the water colour was around 16 along the whole 
transect showing a brownish colour. In 2018 the dam was operational, and the turbidity 
values decreased for the whole transect. Especially upstream of the dam (dam reservoir) 
shows very low turbidity value and a very blueish water colour (values around 2-5 FU). 
Downstream of the dam the turbidity value increased with increasing distance to the dam. 
The same can be observed for the water colour value. The transect analysis shows that 
the Nam Giep 1 dam has an impact on the sediment transport of the river and that not 
only upstream bot also downstream of the dam the sediment load is decreased.  
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Figure 30 Transect analysis of Nam Giep 1. Turbidity (top) and water color (bottom) were analysed for different years. 
Grey box shows the area of the dam where no values were extracted. 

 

Furthermore, we investigated the Land Cover change of the dam surroundings. For the 
analysis the Copernicus GLOBAL LAND COVER product is used to assess the change within 
the land cover classes around the dams. This dataset was selected based on the availabil-
ity of the critical years between 2015 and 2019. Further Land Cover/Land Use products 
were evaluated but did not meet the temporal criteria needed. The changes of the land 
cover were analysed in the BIOMONDO subbasins of each river. Figure 31 shows the 
changes of the Xekaman 1 within the years 2015-2019. The increase of 7206 pixels in the 
water body class show that the building of the dam led to the development of a dam res-
ervoir. The dominant land cover prior to the dam was evergreen forest and cropland.  
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Figure 31 Land cover changes within 2015-2019 in the Xekaman 1 BIOMONDO subbasin 

 

Analysis of the TECI 4 – Water Quality of the Xe-Pian Xe-Namnoy in Summer showed a 
increased TECI score for 2018 driven mainly by turbidity (Figure 32). This is in line with 
the dam collapse in the summer of 2018, the Xe-Pian Xe-Namnoy dam in southern Laos 
suffered a catastrophic failure that resulted in severe flooding and widespread damage. 
On July 23, heavy rainfall caused the dam to overflow and collapse, releasing a massive 
amount of water downstream. The flooding caused significant damage to nearby villages 
and infrastructure, including homes, roads, and bridges. According to official reports, 
more than 40 people were killed, and thousands were displaced. This demonstrates that 
the TECI score can indicate high impacts on biodiversity due to extreme events and which 
parameters is the driver.  
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Figure 32 TECI 4 Water Quality score of the Xe-Pian Xe Namnoy dam reservoir in summer 

5.3.3 The multiple simultaneous effects of river dams 

Decision making regarding the placement of river dams, ultimately, involves a considera-
tion of the multiple simultaneous impacts of river dams, e.g. on green energy production, 
habitat connectivity, and sedimentation processes.  

One way to approach this problem is by determining the extent to which existing or 
planned river dams deviate from the pareto optimal set (Giagkiozis & Fleming, 2014). This 
is a model generated optimal distribution (in our case of dams across the Mekong River 
basin) that takes multiple objectives into account. We determined such an optimal set 
when considering the energy produced and the impact of river dams on habitat connec-
tivity. The ideal dam would have a minimal impact on connectivity while producing the 
maximum possible amount of green energy. The extent to which existing and planned 
river dams correspond to this ideal was determined by determining each dam’s inclusion 
probability in the optimal pareto front. A high inclusion probability corresponds, in this 
case, to dams that (likely) are close, while a low inclusion probability to dams that are far 
away from this ideal situation. When planning new dams you would thus want to choose 
a location where the inclusion probability is high, while dam removal would be most ben-
eficial at locations where the inclusion probability is low.  

To facilitate the assessment of these multiple simultaneous effects of river dams the in-
clusion probability as well as information on a variety of other river-dam impacts were 
made available in a viewer (see Figure 33). More about the viewer and the capabilities are 
documented in the D2.4 document (Table 1). In addition to facilitating a more compre-
hensive understanding of the various, simultaneous impacts of river dams this viewer also 
allows us to critically evaluate our results with the help of stakeholders and experts. One 
outcome of this evaluation could be that the EO could be helpful when improving the cal-
culation of habitat connectivity which currently uses HydroBASINS as its main unit of cal-
culation. Updates to the shape of HydroBASINS after dam placement (as in Figure 27) 
and/or a more detailed mapping of (alternative) river paths may help to improve this cal-
culation and may become a valuable input for the BIOMODO’s roadmap on how to im-
prove freshwater biodiversity monitoring from space. 



 

 

 

 

 58 / 70 

 

 
Figure 33 To allow for a further exploration of the multiple simultaneous effects of individual dams key information 
was made available in a viewer. CI_PR = Connectivity Index_Post Removal. 
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Appendix 1  
 

Table 7 List of indicators for a freshwater biodiversity laboratory 

1 – Biodiversity Change Drivers 

1.1 – Habitat function & structure 

Indicator Data source Readiness/Processing 
iiEES po-
tential 

1 Land use and land 
cover change in the wa-
tershed (catchment), 
including deforesta-
tion 

Land use/land cover change and forest cover products 
are readily available globally or for most regions of the 
world, and products should be selected based on the 
suitability for a given region and the application. As 
mentioned earlier, care should be taken when using 
such wide-area products to ensure they are suffi-
ciently accurate and appropriate for local conditions; 
remember that land use and land cover products of-
ten have average accuracies hovering around 80 % 
(local accuracies can be less).  

LCLU: Copernicus Corine Land Cover (CLC), Euro-
pean coverage, 25ha MMU, 5 time steps since 1990, 
including a change layer. CLMS-CGLS LandCover 
from ProbaV, global, 100m, 2015-19 

ESA Worldcover, 10m, 1 time step (product expected 
end of 2021) 
Also from CLMS: European settlement map, high res-
olution layers: forests, water+wetness (2 time steps 
2015 and 2018) 

C3S LC, long consistent time series at 300m. 
 

Deforestation: Sen4REDD+, but available: Univ. 
Maryland Global Forest Change Results from time-
series analysis of Landsat images characterizing for-
est extent and change.  

 
Otherwise: S2 and S1 for own classification. 

Data Access 
We use available products 
where available and appropri-
ate.  

yes 

2 Area and location of 
rivers, lakes, impound-
ments and wetlands 

Remote sensing can also directly map the area and ex-
tent of habitat, typically by mapping wetland, flood-
plain and riparian vegetation, or by mapping the area 
of lakes.  

Freshwater ecosystem explorer (UN) 
Contains "Permanent and seasonal surface water dy-
namics data" 
JRC Global Surface Water product maps the location 
and temporal distribution of water surfaces at the 
global scale over the past 3.6 decades and provides 
statistics on their extent and change to support better 
informed water-management decision-making. 

 

yes 
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3 Habitats (of rivers, 
lakes …) such as sub-
merged or emergent 
macrophytes and ri-
parian forests 

same as above Macrophytes: from raw satellites data 
Riparian zone Europe: Copernicus Service, Riparian 
LCLU; no change but only 2012 

Data Access for CLMS Riparian 
zone product 

 
 

yes 

4 Habitat connectivity 
along the water body 
and to adjacent water 
bodies and terrestrial 
ecosystems 

The lateral connectivity of a river—its connection to 
the floodplain and wetlands—is observed directly 
from identification of the riparian buffer and from 
water inundation mapping. 

Longitudinal connectivity can be derived from num-
ber and location of dams in the river 

Possibly, this can be derived from 2 variables, namely 
"identification of riparian buffer" in CLMS, and "wa-
ter inundation mapping".  
 

Available data sets: GRaND, GOODD, FHRED 
(=planned), several regional data sets. Also several 
projects going on to complete these sets. O.a. AMBER 
project  

Data Access to the two base 
products and the own pro-
cessing to derive the habitat 
connectivity 

maybe (in-
teresting 

but maybe 
too much 

work) 

1.2 - Drivers - Biophysical/hydrological 

Indicator Data source Readiness/Processing 
iiEES po-
tential 

5 Water body extent (a 
proxy for volume) and 
retention time 

Inundation mapping over a time-series of satellite ob-
servations provides information about the water ex-
tent and retention time and the hydro-period for a 
freshwater system. 

Same as #2   yes 

6 Hydro-period (the 
temporal pattern of 
high and low water) 

same as above Is included in JRC Global Water product see #2. It 
shows the typical temporal pattern, and allows also to 
go into each year individually 

 

yes 

7 Water column trophic 
status, especially eu-
trophication and sedi-
ment load 

Water column trophic status can be determined from 
estimates of chlorophyll, sediment and coloured dis-
solved organic matter concentration, or from esti-
mates of water clarity/Secchi depth using optical RS. 

Copernicus CGLS (produced by BC/PML). If not ap-
propriate, we can start from S3 and S2 data. Note: a 
100m S2 based product is not yet included in CGLS 
NRT service but will come. 

Data Access  

CGLS inland water products at 
300m 

Own processing for HR WQ 
product from S2 

yes 

8 Submerged vegetation Vegetation community identification is typically ap-
proached through classification procedures. These 
procedures work because they take advantage of a 
physical characteristic of green vegetation: strong ab-
sorption of red and blue wavelengths by the chloro-
phyll in the surface layers, and reflectance in the near 
infrared from the inner cell structure. Measuring re-
flectance in those wavelengths can be related to vege-
tation properties such as biomass or stress, which are 
the first order properties used for mapping the 

There is no operational service producing this prod-
uct. Algorithms are available in scientific literature.  

Own processing: 

Submerged macrophytes based 
on S2 and L8, should be done 
like to #3 

yes 
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specialised vegetation communities that occupy dif-
ferent wetland zones and are good proxies for habitat 
diversity. 
 

9 Species and Ecosystem 
Services 

Direct observation of species and habitats is possible 
in limited cases—with high spatial and/or spectral 
resolution data it is possible to directly observe ripar-
ian, wetland, and submerged macrophytes and IAS. 
Such images tend to be expensive, however. 
To further detail classification to species level or to 
identify intrinsic species characteristics or processes, 
airborne hyperspectral sensors may be needed since 
current spaceborne systems do not have sufficient 
spatial or spectral resolution for this, and the small 
size of many wetland communities can make airborne 
monitoring practical. In submerged aquatic plant 
communities, species differentiation may be possible 
because the fine spectral bands measured by a hyper-
spectral sensor allow for more precise characterisa-
tion of individual plant species reflectance. This type 
of data can then be linked to intrinsic plant physiolog-
ical processes. For example, it is possible to use hy-
perspectral reflectance characteristics and stable iso-
tope markers to distinguish native submerged plant 
species from submerged IAS because they use differ-
ent photosynthetic pathways. This information can 
provide insight into IAS adaptation traits for freshwa-
ter ecosystems (Santos et al. 2012). Using hyperspec-
tral data, it is also possible to measure the foliar 
chemistry of inundated plants or other biotic commu-
nities such as the cyanobacteria commonly associated 
with harmful algal blooms (HABs). These allow infer-
ences about the status of freshwater ecosystem ser-
vices such as safe drinking water, nutrient cycling/eu-
trophication and carbon cycling. However, additional 
datasets are usually required for these inferences, 
such as laboratory samples of foliar chemistry, photo-
synthetic rates, respiration rates, stable isotope con-
centrations, biomass, and other measurable proper-
ties of plant species. 

It would require buying VHR data, or making own 
measurements by drones. Use simulated hyperspec-
tral data and test with PRISMA. 

Greatest potential is to address with information by 
combining other drivers and EBVs with ecosystem 
models. 

 

something 
for the 
longer 
term, 

Roadmap 

10 Invasive alien species 
(IAS) 

same as #9 

  

long term 

2 - Essential Biodiversity Variables 
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Indicator  Data source Readiness/Processing 
iiEES po-
tential 

11 Species populations - 
Population abundance 

Species abundances: Predicted count of individuals 
over contiguous spatial and temporal units address-
ing the global extent of a species group. 

VI in the riparian zone: CLMS, combination of classi-
fication from Riparian product and VI from Phenol-
ogy service 
 
Chl in the lakes: same as #7 

Data Access  

LC and VI from CLMS 
CHL from CGLS (S3)  

Own processing for HR WQ 
product from S2 

yes 

12 Species traits - Phenol-
ogy 

Phenology: Presence, absence, abundance or dura-
tion of seasonal activities of organisms. 

Riparian zone, wetlands: Copernicus LMS, Pan Euro-
pean High Resolution Vegetation Phenology,  
data going back to 2017 only! 
 
In-water, Chl: deriving it directly from S3 and S2; 
based on CIWAWA (BC) 

Data Access  

Phenology from CLMS (availa-
ble Q2/2021) 
Own processing: 
Chl Phenology derived from 
analysing the time series of 
CHL, from #11 

yes 

13 Species traits - Body 
mass / biomass 

Not GEOBON EBV but added by Vihervaara et al. 
(2017); for inland waters, this is to be understood as 
algae biomass 

same as #7 Data Access  

CGLS inland water products at 
300m 

Own processing for HR WQ 
product from S2 

yes 

14 Species traits - Physio-
logical traits 

Physiology: Chemical or physical functions promot-
ing organism fitness and responses to environment. 
Vihervaara: Inland waters - state of streams and 
brooks 

not known - no 

15 Ecosystem structure - 
Habitat structure / 
condition 

Not named in GEOBON; GEOBON: The spatial ar-
rangement of ecosystem units collectively defined by 
organisms forming these units. EBV Live cover frac-
tion = The horizontal (or projected) fraction of area 
covered by living organisms, such as vegetation, 
macroalgae or live hard coral. 
EBV Ecosystem distribution = The horizontal distri-
bution of discrete ecosystem units. (there is also EBV 
ecosystem vertical profile) 
 
Vihervaara Inland Water: algae, organic matter, in-
land water breeding birds, inland water fish stocks, 
state of streams and brooks 

Copernicus CGLS provides LSWT, CHL, TUR at me-
dium resolution. 

S2 are suitable to derive bottom vegetation or 
emerged vegetation 

Data Access  

CGLS inland water products at 
300m 

Own processing for HR WQ 
product from S2 
 

maybe 

16 Ecosystem structure - 
Ecosystem extent and 
fragmentation 

Not in GEOBON 
Vihervaara: Inland water breeding birds 

- - no 
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17 Ecosystem structure - 
Ecosystem composi-
tion by functional type 

Not in GEOBON 
Vihervaara: Inland water algae 

Species composition is possible – to some extend – 
with OLCI. But overall this should be left for hyper-
spectral data and thus for the Roadmap 

- no 

18 Ecosystem function - 
Net primary productiv-
ity 

GEOBON: Ecosystem primary productivity: The rate 
at which energy is transformed into organic matter 
primarily through photosynthesis. 

Needs CHL, PAR, PE curves. 
I.e. we could use Chl from CGLS, but PAR we would 
calculate from S3 and S2 directly. Then we can also 
use our own CHL. 
A difficulty will be to get PE curves for the specific wa-
ter bodies. 

Data Access  

CGLS inland water products at 
300m 

Own processing for HR prod-
uct from S2 

yes 

19 Ecosystem function - 
Ecosystem phenology 

Not in Vihervaara but in GEOBON! 
 
GEOBON: Duration and magnitude of cyclic pro-
cesses observed at the ecosystem level, such as in veg-
etation activity, phytoplankton blooms, etc. 

same as #12 Data Access  

Phenology from CLMS (availa-
ble Q2/2021) 
Own processing   
CHL Phenology derived from 
analysing the time series of 
CHL, from #11 

yes 

3 – Model input and output 

3-1 –GLOBIO inputs 

Indicator EO Data source Readiness/Processing 
iiEES po-
tential 

20 Water temperature 

 

CGLS LSWT 

No product for higher spatial resolution. Explore L8 
and point to future LSTM 

Data Access  

CGLS inland water products at 
300m, CCI Lakes at 1000m 
 

yes 

21 LCLU 

 

same as #1 Data Access  

CLMS and others, see #1 
 

yes 

22 Map of major river 
dams 

 

part of #1 Available data sets: GRaND, GOODD, 
FHRED (=planned), several regional data sets. Also 
several projects going on to complete these sets. O.a. 
AMBER project. 

see #1 
 

yes 

3.2 –Validation of GLOBIO outputs 

Indicator EO Data source Readiness/Processing 
iiEES po-
tential 

23 Algal blooms in lakes  Concentration of harmful algae in lakes same as #7 Data Access CGLS inland water 
products at 300m and, CCI 
Lakes at 1000m 

yes 
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Own processing for WQ S2 

23a Aquatic vegetation  Can be done  yes 

23b MSA  Not possible to detect from EO  no 

3.3 –DELWAQ inputs 

Indicator EO Data source Readiness/Processing 
iiEES po-
tential 

24 bathymetry 

   

no 

25 bed composition 

 

S2 own processing to map the bottom of the water 
body; algorithms are available in literature 

 

yes 

26 wind 

 

CAMS Data Access  

CAMS 

yes 

27 water level 

 

available from CGLS, CCI Lakes Data Access 

CCI Lakes at 1000m  

yes 

28 stream velocity 

 

not possible from EO for rivers and lakes (to be con-
firmed) 

- no 

29 wave characteristics 

 

not possible from EO for rivers and lakes (to be con-
firmed) 

- no 

30 nutrients 

 

not possible from EO - no 

3-4 – Validation of DELWAQ outputs 

   

Indicator EO Data source Readiness/Processing 
iiEES po-
tential 

31 Total suspended mat-
ter 

 

CGLS & S2 own processing, same as #7  Data Access  

CGLS S3, CCI Lakes 

Own processing for WQ S2 

yes 

32 Primary Production 

 

same as #18 

 

yes 

33 Chlorophyll-a 

 

CGLS & S2 own processing, same as #7  Data Access  

CGLS S3, CCI Lakes  

Own processing for WQ S2 

yes 

34 Kd 

 

CGLS & S2 own processing, same as #7 Own processing for WQ S2 yes 
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4 – Ecosystem functions 

 Indicator EO Data source Readiness/Processing 
iiEES po-
tential 

35 Disturbance regulation 
- Flood occurance - 
standing water 

Petronelli: Global Flood Monitoring System, Global 
Inundation Extent from Multi-Satellites (1993–2007) 

same as #2 

JRC https://global-surface-water.appspot.com/  

 

yes 

36 Disturbance regulation 
- Eutrophication of wa-
ter bodies - ocean col-
our 

Petronelli: usual WQ parameters CGLS & S2 own processing, same as #7 

 

yes 

37 Water regulation - In-
land water dynamic - 
Change in water 
stage 

Petronelli: Sentinel 3 altimetry (lakes level) same as #27 
available from CGLS 

 

yes 

38 Water regulation - In-
land water dynamic - 
Water body distribu-
tion 

Petronelli: Global Surface Water (1984–2015) same as #2 
JRC https://global-surface-water.appspot.com/ 

 

yes 

39 Soil/Sediment reten-
tion - Sediment plumes 
- Turbidity 

Petronelli: ocean colour sensors CGLS & S2 own processing, same as #7 Data Access  

CGLS S3, CCI Lakes 

Own processing for WQ S2 

yes 

40 Nutrient regulation - 
Nutrient availability - 
Chl-a & algae blooms 

Petronelli: ocean colour sensors; interesting: Huang 
et al. (2014) used Landsat and MODIS data to charac-
terize eutrophication in response to land use change 
in a lake’s catchment 

CGLS & S2 own processing, same as #7 Data Access  

CGLS S3, CCI Lakes 

Own processing for WQ S2 

yes 

41 Supporting habitats - 
Habitat extent - Land 
cover/forest cover 

Petronelli: ESA global maps same as #1 

 

yes 

42 Supporting habitats - 
Habitat extent - Water 
body 
distribution 

 

same as #2 
JRC https://global-surface-water.appspot.com/ 

 

yes 

43 Supporting habitats - 
Habitat extent - Inland 
Water dynamic 

Wetland Trend Index same as #5 (which is same as #2) 
JRC https://global-surface-water.appspot.com/ 

 

yes 
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44 Supporting habitats - 
Habitat extent - Lake 
ice 

 

GCLOPS inland water, cryosphere products 

 

yes 

45 Food - Production of 
fish stocks - Chl-A 

 

CGLS & S2 own processing, same as #7 

 

yes 

46 Food - Production of 
fish stocks - Water 
temperature 

 

CGLS inland water 

 

yes 

47 Water supply - water 
provision - water body 
distribution 

 

same as #2 
JRC https://global-surface-water.appspot.com/ 

 

yes 

48 Water supply - water 
quality - SRS-based es-
timates of water qual-
ity 

Petronelli: EnMAP CGLS & S2 own processing, same as #7 

For the roadmap: hyperspectral 

 

yes 

 

Explanation of the columns of Table 7 

 

• The “Indicator columns” include an identifier (first column), a short name and a description according to the source publication 
(second and third columns). 

• The “data source” column contains satellite data sources or service providing the required information. These data sources have 
been checked to be available, suitable, and accessible.  

• The column “Readiness/Processing” describes the actions to be undertaken in order to transform the data from its source into a 
variable which is required by the indicator. This can be “data access” which means download and prepropress (subsetting, projec-
tion, …) or “own processing” where a thematic algorithm needs to be run on raw data. 

• The column “iiEES potential” is an initial assessment if the indicator is possible to be included in an Earth System Science biodiver-
sity laboratory. 

 

Further explanations: 

• Biodiversity Change drivers are according to Geller G.N. et al. (2017) 
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• EBVs are according to Viheraava (2017) and aligned with GEOBON EBV description 
• Ecosystem Services are according to Petronelli (2017), Table 3 & 4 

 

The colours are used to highlight “Indicators” (blue), “Data access” (green) and “own processing” (orange). No further meaning is associ-
ated with the colours. 

 


